
SOLUTION OF INVERSE PROBLEMS FOR THE QUASILINEAR HEAT CONDUCTION 

EQUATION IN THE SELF-SIMILAR MODE FOR THE MULTIDIMENSIONAL CASE 

T. B. Gardashov UDC 536.24 

Explicit solutions are found for inverse problems for the quasilinear heat 
conduction equation in the case of self-similarity of the process for the 
multidimensional case. The unknown thermophysical characteristics depend on 
the temperature distribution. 

Mathematical modeling of nonstationary heat transfer processes is closely connected 
with the solution of inverse problems concerned with the determination of nonlinear thermo- 
physical characteristics of the mathematical mode; these characteristics are coefficients 
of a quasilinear heat conduction equation. References [1-4] are concerned with differing 
approaches to inverse problems of the determination of nonlinear thermophysical charac- 
teristics of mathematical models. In [5-9] self-similar solutions are employed to deter- 
mine nonlinear thermophysical characteristics for a mathematical model, these characteris- 
tics being the coefficients of a one-dimensional quasilinear heat conduction equation, and 
also systems of quasilinear heat conduction equations. In the present paper, in contrast 
to the papers mentioned, we consider a multidimensional quasilinear heat conduction equa- 
tion. 

I. We consider a thermal process described by the equation 

aT 
C ( T ) - -  = V ( I ( T )  vT)+Q(T) ,  (x, t) CQ (1) 

�9 Ot 

with initial and boundary conditions 

T(x, 0)=0, x{D, 

T(O, x2, x~ . . . . .  x~, t ) =  fit m, 

T (xa, O, xs . . . . .  x~, t ) : - f2 t  m, 

T (xl, x2, x~ . . . . .  x~_~, O, t ) =  f~t ' ,  t > O, 

(2) 

(3) 

where fi, i = i, n, and m are given constants; n _> 2 is a given positive integer. With 
no loss of generality we assume that fi > 0. 

Before presenting a statement of the inverse problem we indicate sufficient conditions 
for guaranteeing self-similarity for a solution of boundary value problem (i)-(3). We as- 
sume the following condition A to be satisfied: if m = 0, then Q(T) = 0; but if m # 0, 
then C(T) and I(T) are homogeneous functions of order o ~ 0 and Q(T) is a homogeneous func- 
tion of order o + 1 - i/m. 

We seek a solution of Eq. (i), subject to conditions (2) and (3), in the form T(x, t) = 

tmv(z), where z = (zl, z 2 ..... Zn), z i = xi t-I/2, i = i, n. We then find that under as- 

sumption A the function v(z) satisfies the equation 

mvC(v)--  0,5C(v) z i  = 2v(v) q- Q(v), z 6 O  (4) 

and the conditions 
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v(oo, oo . . . . .  o 0 ) = %  ( 5 )  

v(0, z~, z~, ..., Zn-. Zn)= A, 

v ( z .  O, z~ . . . . .  zn_ .  z n ) =  h, 

v(zl, z~, z3, ..., z~-1, O)= f~. ( 6 )  

Our interest centers on a solution of inverse problems concerned with determining the 
coefficients of Eq. (I). It is obvious that if the coefficients of Eq. (i) are unknown, 
the conditions (1)-(3) are then insufficient for their determination. It is therefore 
necessary to append additional conditions to the system (i)-(3). We give several such 
typical conditions usually used in solving inverse problems: 

T(x, ~) = Co(X), x6D, ( 7 )  

T(n,  x', t) = @x(x', t), x'CV', t > 0 ,  
( 8 )  

! T(=~, x ' ,  i)d=~ = r  i), = ' ~ D ' ,  i > 0 ,  
�9 ( 9 )  

Each of the conditions (7)-(9) has a real physical meaning. Function ~0(x) gives the 
temperature distribution in the body at time t = tN; function ~z(x', t) is the value of 
the temperature on the curve x z = N for arbitrary time t > 0; and function ~2(x', t) is 
connected with the expression for the general quantity of heat contained in domain (0, ! ) 
for arbitrary time t > 0. It is readily seen that for each of the functions #0(x), ~1(x', 
t), ~2(x', t) a self-similar solution of Eq. (I) (see [7]) can be determined uniquely: 

, Z l  Z 1 ' .., Zl  Z 2 

1 ~ ' - -  ' " ' "  ' Zl  Z l  Z l  Zl  2 
m)+ 

4___~I ( t_~ ~2-2= ate2 ( Iz2 Zz~ lzn t z ) 
+ z~ k z ~ )  az~ , z~ ' z~ . . . . .  z~ ' z ~ '  

xz (10) 
zi = ]/F >0. 

Conditions different from relations (7)-(9) also exist, which make it possible to 
determine a self-similar solution of Eq. (i). To avoid considering each of these cases 
in detail, we assume that a self-similar solution of Eq. (I) is given and that one or 
several coefficients of Eq. (i) are to be determined. 

Let C(T) > 0 Q(T) ~ 0 be specified on (0, +~) and let these functions be bounded and 
continuous. From conditions (1)-(33, with the twice continuously differentiable function 
y(zl) = v(zl, z2(~ , z3(~ , ...' Znt~ given, we are required to determine coefficient 
I(T), continuous, positive, and bounded on (0, ~), where z2(~ z3(~ .... Zn (~ are given 

positive numbers. We assume, in addition, that I(0) = K o 

$o), i = 2-~--n, are also given, where ~o = (z2 (~ z3 (~ 

notation: ~i(Zl) = Vzi(Zl, $o), ~i(zl) = Vziz i (zz, ~o), 

fn}" 

+~); 

> 0, Vzi (zl, ~0), Vziz i (zl, 
.... Zn(~ We introduce the 

i = 2, n, f0 = max{fl, f2 .... , 

Let the following conditions by satisfied: 

i) y(z l) has an inverse function F(y), defined on (0, f 0] with domain values on [0, 

2) ~ (P (y)) :# o, y E (o, fo]. Fu -2 (Y) @ e l  
i=O 

We then have the following expression for function I(T): 
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where 

T T (s 
;~(T) = exp [- -  j" P(s) ds][• Jr-j" P,(s)exp[.l'P(~)d~ ] ds], 

0 0 0 

P (Y) -- [~i (F (y)) Fu 3 (Y) ~ + c% (F (y)) 
fy (y) ~ t=2 i=2 

R (y) -- [ myC (y) -- Q (g) -- 0,5C(y)F(b,).--0,SO(y)2 zl~176 
Fu (Y) i=2 

X - -  
/=2 

x 

(II) 

Actually, Eq. (4) can be written in the form 

Ov = mvC (v) -- 0,5C (v) zi - - ,  z C D. 
i=l az~ (12) 

This equation is valid for arbitrary z e D. We write Eq. (12) at the point (zl, $0) e D; 
in the resulting equation we pass over to the inverse function z I = F(y) and we consider 
that 

VZa (Z1, t0) --- F y  I (~), Vz~zl (z1, t0) = - -  F 7  3 (g) Fyy (y), 

Then inthe notation adopted above Eq. (12) is transformed to the form 

[ ) t F ~ l  '~ (F (b'))-%' [ 2  Fuu (Y) ] �9 ,y------~ 4- /__. ot~ (y) ~- ~ (F (y)) Fa ~ (Y) % (g) -= 
i=2 ] i=2 

=myC(y)--Q(y)--O,5C(y)[ F(F) -F ~ z}~ 

From this we have 

K (y) + P (y) ~ (y) = R (y). ( 13 ) 

h s o l u t i o n  of  t h i s  o rd in a ry  d i f f e r e n t i a l  equa t ion ,  wi th  the  cond i t i on  ~(0) = <0, has 
the  form (11).  This e s t a b l i s h e s  the  v a l i d i t y  of formula (11) .  

But i f  c o e f f i c i e n t  h(T) i s  given and i t  i s  c o e f f i c i e n t  C(T) t h a t  i s  being sought ,  then 
under the  assumptions enumerated above we have the  express ion  

{[ ! _ + _ 2 o ~ ( F ( T ) ) I U ( T ) @ [ i ~ ( F ( T ) ) _  ,6' (T)  - -  F 2 (T-------~ i=~  i=2 

FTT(T)]2~(T)@Q(T)}[ m T F ~ ( T )  2FT(T)F(T) 21 ~ ~ zf(~ (F(T))]-',~i �9 
i=2 

(14) 

The right side of Eq. (14) is assumed to be continuous and positive. A similar expression 
holds also for coefficient Q(T) if I(T) and C(T) are given. 

II. Assume now that we wish to determine coefficients C(T) > 0, I(T) > 0, Q(T) of 
Eq. (I) simultaneously. We consider the cases m = 0 and m ~ O separately. 

1 ~ Assume m = 0. According to condition A, in this case we must put Q(T) = 0. It 
is obvious that to different initial data fi, i = i, n in condition (6) there correspond 
different solutions of Eq. (4). We assume that the numbers fli, f2i, i = i, n correspond 
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to self-similar solutions Vm(Z), v2(z) of Eq. (4). Let the functions y = vz(zl, $i), Y = 
v2(zl, $2) be given and suppose we wish to determine the unknown coefficients I(T) > 0 and 

C(T) > O, where $i = (z2 (I), z3 (I) .... , Zn(l)), $2 = (z~(2), z3(2), ..., Zn(2)); in parti- 

cular, we may have ~i - $2. In addition, we assume that Vkzi(Zx, Sk), Vkzizi(Zl , Sk), k = 

i, 2, i = 2, n, l(O) = <0 > 0 are also given. Let Fk(y) be the function inverse to the 
function Vk(Zz, Sk ), 

M (y) = ~ (-- I) ~-~ ~ (F~ (y)) F~(y)~ ~ z<~, o~ni (F~ (y)) -F 

+ ~ ( ~ )  ~ I (~  (y)) z~ 
F~(y) (-- I)~-~ ~(------~ + ~,~ ~;, (r~ (y)) + 

i = 2  - i =  2 

F~(~)  I ' N ( ~ ) =  - -  ~ ( ~ )  + ~ ( F ~ ( ~ ) )  'M(y)--  

~ = _  F~ ~,(y) ~=~ 

~ki  (Zl) = ~)l~Z i (Zl,  ~h) '  [~/r (Zl)  = [)fCZiZ i (11'  ~h) '  i = 2, n ,  

f~ = max { f~ ,  f ~  . . . .  , f~,~}, k = 1, 2. 

Assume m = 0 and that the following conditions are satisfied: 

i) Function y = Vk(Z I, gk) has an inverse function Fk(Y), defined on (0, fk] with domain 
of values on (0, co); 

2) Fh (y) :/= O, Fl~y (y) :~ O, ~ Zl~)Oth~ (Fh (y)) -~ 
i = 2  

.+ F h ( y )  q=0, yC(0, fh], I,,= t, 2; 
Fhu (y) 

9. 

.t ]i i F~y(y) @ ahi (Fh(y)) z~a)ochi X 
3 ) h=l L i=2  i=2  

x(F~,(y)) + F~(y)  ]~ 
Fk~ (Y) ] =/= O. 

We then have the following expressions for functions X(T) and C(T): 

T 

~. (T) - -o exp [ -  .[ M (~)ds], r ~ (o, rlJ, 
0 

T 

C (T) = --  2• (T) exp [.[ M (S) ds], T 6 (0, f,]. 
0 

(15) 

(16) 

Actually, we rewrite Eq. (4) for k = 1, 2 in the form 

s H_ ~ O'vh )~(vk)-}-0,5 '~z,  avh C(o~)=O, k =  1,2. (17) 
~=, \ az~ ] i=i~ az2, ~ az~ 

This  i s  a sys t em o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  w i t h  r e s p e c t  t o  h ( y )  w i t h  unknown f u n c -  
t i o n  C(y) .  In  Eq. (17)  we go over  t o  t h e  i n v e r s e  f u n c t i o n  z 1 = Fk(Y) and c o n s i d e r  t h a t  
Vkzl(Z~,  Sk) : Fky-Z(Y ) ,  V k z l z l ( z l  , Sk) = - -Fkyy(y)Fky-3(Y)  �9 Then in  t h e  n o t a t i o n  a dop t ed  
above we have  

i~2 i= 
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- - !  

F~ (g) zlz~)a~ (F~ (g)) f F~ (y) 

-k 0,56 (Y) = O, A = 1,2. (18) 

From the  equa t ion  for  k = 1 we s u b t r a c t  the  equa t ion  for  k = 2. Then us ing  the  n o t a t i o n  
adopted above, we ob ta in  

)d (g) + M (y) Z (g) =O. 

A solution of this ordinary differential equation, with the condition ~(0) = <0 has the 
form (15). Substituting the expression obtained for k(y) into Eqs. (18), we deduce that 
expression (16) is valid. Thus we have shown that formulas (15) and (16) are valid. 

2 ~ . Now let m # 0. According to condition A, in this case, C(T) = cot ~ h(T) = 

h0T a, Q(T) = Q0 Ta+z-z/m, where c o > 0, k 0 > 0, Q0 -< 0, and o are certain numbers. Assume we 

wish to determine coefficients C(T) > 0, X(T) > 0, Q(T) _< 0 of Eq. (i); this leads to ob- 

taining unknown constants in the expressions for these coefficients. We assume that c o > 
0 is a given constant and we wish to determine k 0 > 0, o, Q0 <- 0. Let 

z(~)= (z~), z~ ~), ..., z(,~)), ~ 1  = ~ [%(z(~)l~, 

n 
~ = v (z (~)) ~ v ~  (z(~)), ~ = [v (z(~))f -~/m 

i = 1  

~ = corn [v (z(~))p - -  0,5Coy (z (~)) ~ .  zl~)v~ (z(~)), ~ = 1, 2, 3, 
i = l  

(Y~ = (~Z12G(,33 - -  (~13(Z32) ((Z210~13 - -  06110523 ) - -  

- -  ((Z12G(,23 --~ Cr ) (0~31(Zt3 - -  0[.11(Z33), 

= ([~2(~.13 - -  ~tG~23 ) ((Z31~13 - -  G~12(Z33 ) - -  

- -  (~30513 ~ - -  ~1~Z33) ((Z22(Z13 - -  fZj1Cg33 ). 

Assume that at the three arbitrary 

Vzi(Z), Vzizi(Z) ~ i = i, n, and ~8 > 0, 

i, 3, do not vanish simultaneously. 

Equation (4) is true for arbitrary z e D and C(v) > 0~ %(v) > 0, Q(v) ~ 0. 
down Eq. (4) for C(v) = c0v a, %(v) = 10v ~ Q(v) = Q0 vO+1-1/m at the points z (1), 

and use the notation adopted above, we then find that 

points z(z), z(2), z(3) we are given values of v(z), 

a21~za # ~11a23, detllaksll # 0, k, s = i, 3, Bk, k = 

If we write 
z ( ~ ) ,  z ( ~ )  

Under the assumptions adopted above, this system has a unique solution: 

~o = ~/oc, ~ = [~ (o~1~o~ - -  ot~l .~)  + o~ (1%~13 - -  oc~ , ) ] /~  (o~10c13 - -  

-- 0~1~2~), Qo = [~ (~1o~ -- ~&2) + ~ (oc~1~ -- 

TABLE i. Comparison of Exact and Approximate Values of Thermal 
Conductivity Coefficient 

I T 
0 , I 6 5 3  IO,;Ol91 0 ,2466  [0 ,3012[  2,3679 [0 ,4493]  0 ,5488 10,6703[0,818711,000 

____I__I 0,70 /0,65 / 0,60 0,55 0,50 10,45 0,40 10,35 10,30 0,25 
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An analogous formula holds if, instead of I0, o, Q0, we seek other numerical parameters. 

The explicit expressions obtained in sections I and II make it possible to work out 
simple stable algorithms for an approximate solution of the inverse problems considered 
above [I0]. 

Example. Consider the determination of coefficient I(T)> 0 from conditions (10-(3) 
when n = 2, C(T) = i, Q(T) = 0, m = 0, t N = i, T(xz, x2, tN) = ~0(xz, x 2) = exp(-xz, -- 
xz). It follows from Eq. (ll) that I(T) = (i - in T)/4, 0 ~ T ~ 1. A direct verification 
shows that in the given case T(xl, x z, t) = [(--x I -- x2)/v~], v(zl, z 2) = exp(-z I -- z2), 
I(T) = (i - lnT)/4 satisfy the conditions for systems (i)-(3) and (4)-(6). 

In Table 1 we have shown for comparison the exact and approximate values of coeffi- 
cient I(T) at the nodes of a nonuniform grid introduced in the interval [0, i]. Here use 
has been made of relation (12). The first and second rows of Table 1 give the exact and 
the approximate values, respectively, for I(T); the approximate values are obtained from 
relation (12). 

NOTATION 

t, time; tN, time interval of observation; D, domain in n-dimensional euclidean space; 
D = {x:x ~ (x I, x 2 ..... Xn), x i > 0, i = I, n}; D', domain in (n - l)-dimensional euclidean 

space; D' = {x':x' = (x 2, x 3 .... , Xn), x i > 0, i = 2, n}; x = (xz, x 2 ..... Xn) , arbitrary 
point of domain D; x' = (x=, x 3 ..... Xn), arbitrary point of domain D'; T, temperature 
field; C, volume heat capacity; i, thermal conductivity coefficient; Q, strength of internal 
sources; ~, s fixed positive points; ~ ~ D x (0, tN], V ~ [(3/8xi), (8/8x2), ..., (8/SXn)]. 
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